Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.965
Filtrar
1.
J Med Virol ; 96(4): e29577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572977

RESUMO

Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Leucócitos Mononucleares , NF-kappa B , SARS-CoV-2 , Vacinas de Produtos Inativados , Imunidade , Análise de Sequência de RNA , Anticorpos Antivirais
2.
Front Immunol ; 15: 1350197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576605

RESUMO

Introduction: Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. Methods: In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). Results: We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. Conclusion: CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Animais , Cloreto de Sódio , Edema , Imunidade
3.
J Exp Clin Cancer Res ; 43(1): 118, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641815

RESUMO

High-throughput sequencing has ushered in a paradigm shift in gastric microbiota, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. Recent attention directed toward the composition and functionality of this 'community' has shed light on its potential relevance in cancer. The microbial composition in the stomach of health displays host specificity which changes throughout a person's lifespan and is subject to both external and internal factors. Distinctive alterations in gastric microbiome signature are discernible at different stages of gastric precancerous lesions and malignancy. The robust microbes that dominate in gastric malignant tissue are intricately implicated in gastric cancer susceptibility, carcinogenesis, and the modulation of immunosurveillance and immune escape. These revelations offer fresh avenues for utilizing gastric microbiota as predictive biomarkers in clinical settings. Furthermore, inter-individual microbiota variations partially account for differential responses to cancer immunotherapy. In this review, we summarize current literature on the influence of the gastric microbiota on gastric carcinogenesis, anti-tumor immunity and immunotherapy, providing insights into potential clinical applications.


Assuntos
Helicobacter pylori , Microbiota , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Carcinogênese , Imunidade
5.
ACS Nano ; 18(15): 10495-10508, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38556991

RESUMO

Sonodynamic therapy (SDT) has promising application prospects in tumor therapy. However, SDT does not eradicate metastatic tumors. Herein, Cu-substituted ZnAl ternary layered double hydroxide nanosheets (ZCA NSs) were developed as both sonosensitizers and copper nanocarriers for synergistic SDT/cuproptosis cancer therapy. An optimized electronic structure more conducive to the sonodynamic process was obtained from ZCA NSs via the Jahn-Teller effect induced by the introduction of Cu2+, and the synthesized ZCA NSs regulated the intricate tumor microenvironment (TME) by depleting endogenous glutathione (GSH) to amplify oxidative stress for further enhanced SDT performance. Furthermore, cuproptosis was evoked by intracellular overload of Cu2+ and amplified by SDT, leading to irreversible proteotoxicity. In vitro results showed that such synergetic SDT/cuproptosis triggered immunogenic cell death (ICD) and promoted the maturation of dendritic cells (DCs). Furthermore, the as-synthesized ZCA NS-mediated SDT/cuproptosis thoroughly eradicated the in vivo solid tumors and simultaneously elicited antitumor immunity to suppress lung and liver metastasis. Overall, this work established a nanoplatform for synergistic SDT/cuproptosis with a satisfactory antitumor immunity.


Assuntos
Neoplasias Hepáticas , Neoplasias , Terapia por Ultrassom , Humanos , Cobre , Eletrônica , Glutationa , Hidróxidos , Neoplasias Hepáticas/tratamento farmacológico , Imunidade , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
J Viral Hepat ; 31 Suppl 1: 21-25, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38606938

RESUMO

Attempts to achieve a functional cure or amelioration of the severe X linked bleeding disorders haemophilia A (factor VIII deficiency) and haemophilia B (factor IX deficiency) using AAV-based vectors have been frustrated by immune responses that limit efficacy and durability. The immune responses include adaptive and innate pathways as well as cytokine mediated inflammation, especially of the target organ cells-hepatocytes. Immune suppression has only been partly effective in clinical trials at ameliorating the immune response and the lack of good animal models has delayed progress in identifying mechanisms and developing more effective approaches to controlling these effects of AAV gene transfer. Here we discuss the arguments for and against more potent immunosuppression to improve factor expression after AAV-mediated gene therapy.


Assuntos
Hemofilia A , Hemofilia B , Animais , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia B/genética , Hemofilia B/terapia , Terapia Genética , Terapia de Imunossupressão , Imunidade
7.
Vaccine ; 42(12): 3099-3106, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38604911

RESUMO

Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.


Assuntos
Adenovirus Caninos , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Vacinas Virais , Animais , Cães , Humanos , Estudo de Associação Genômica Ampla , Projetos Piloto , Anticorpos Antivirais , Adenovirus Caninos/genética , Antígenos Virais , Vacinação/veterinária , Vacinas Atenuadas , Imunidade , Vírus da Cinomose Canina/genética , Doenças do Cão/prevenção & controle , Mamíferos
8.
J Infect Dev Ctries ; 18(3): 464-472, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635624

RESUMO

Paragonimiasis is a common zoonotic parasitic disease. The retinoic acid-inducible gene I (RIG-I) signaling is very important for the host to recognize invading pathogens (especially viruses and bacteria). However, the role of RIG-I signaling in the early stages of P. proliferus infection remains unclear. Therefore, in this study, Sprague-Dawley (SD) rat models with lung damage caused by P. proliferus were established. Experimental methods including Enzyme-linked Immuno Sorbent Assay (ELISA), real-time fluorescent quantitative polymerase chain reaction (PCR), western blotting, and hematoxylin and eosin (HE) staining were used to explore the mechanisms of lung injury caused by P. proliferus. As a result, the expression of the mRNA and proteins of RIG-I signal-related key target molecules, including RIG-I, tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6), interferon regulatory Factor 7 (IRF7), IPS-1, and downstream C-X-C chemokine ligand 10 (CXCL10), were significantly up-regulated immediately after infection, peaked at 3 or 7 days, and showed a downward trend on after 14 days. The levels of pro-inflammatory cytokines interleukin-1 (IL-1), interferon (IFN)-α, -ß, and -γ, which represent type 1 immune response, gradually increased and reached a peak by 14 days, which was consistent with the changes in the degree of inflammatory damage observed under HE staining of lung tissues. In conclusion, RIG-I signaling is activated in the early stage (before 14 days) of P. proliferus infection, it is inferred that the lung injury of the host may be related to the activation of RIG-I like signaling to induce type I immune response.


Assuntos
Lesão Pulmonar , Paragonimíase , Paragonimus , Animais , Ratos , Proteína DEAD-box 58 , Ratos Sprague-Dawley , Interferon-alfa , Imunidade , Paragonimus/metabolismo , RNA Helicases
9.
J Cancer Res Clin Oncol ; 150(4): 171, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558328

RESUMO

BACKGROUND: Tryptophan (Trp) is an essential amino acid. Increasing evidence suggests that tryptophan metabolism plays a complex role in immune escape from Lung adenocarcinoma (LUAD). However, the role of long non-coding RNAs (lncRNAs) in tryptophan metabolism remains to be investigated. METHODS: This study uses The Cancer Genome Atlas (TCGA)-LUAD dataset as the training cohort, and several datasets from the Gene Expression Omnibus (GEO) database are merged into the validation cohort. Genes related to tryptophan metabolism were identified from the Molecular Signatures Database (MSigDB) database and further screened for lncRNAs with Trp-related expression. Subsequently, a prognostic signature of lncRNAs related to tryptophan metabolism was constructed using Cox regression analysis, (Least absolute shrinkage and selection operator regression) and LASSO analysis. The predictive performance of this risk score was validated by Kaplan-Meier (KM) survival analysis, (receiver operating characteristic) ROC curves, and nomograms. We also explored the differences in immune cell infiltration, immune cell function, tumor mutational load (TMB), tumor immune dysfunction and exclusion (TIDE), and anticancer drug sensitivity between high- and low-risk groups. Finally, we used real-time fluorescence quantitative PCR, CCK-8, colony formation, wound healing, transwell, flow cytometry, and nude mouse xenotransplantation models to elucidate the role of ZNF8-ERVK3-1 in LUAD. RESULTS: We constructed 16 tryptophan metabolism-associated lncRNA prognostic models in LUAD patients. The risk score could be used as an independent prognostic indicator for the prognosis of LUAD patients. Kaplan-Meier survival analysis, ROC curves, and risk maps validated the prognostic value of the risk score. The high-risk and low-risk groups showed significant differences in phenotypes, such as the percentage of immune cell infiltration, immune cell function, gene mutation frequency, and anticancer drug sensitivity. In addition, patients with high-risk scores had higher TMB and TIDE scores compared to patients with low-risk scores. Finally, we found that ZNF8-ERVK3-1 was highly expressed in LUAD tissues and cell lines. A series of in vitro experiments showed that knockdown of ZNF8-ERVK3-1 inhibited cell proliferation, migration, and invasion, leading to cell cycle arrest in the G0/G1 phase and increased apoptosis. In vivo experiments with xenografts have shown that knocking down ZNF8-ERVK3-1 can significantly inhibit tumor size and tumor proliferation. CONCLUSION: We constructed a new prognostic model for tryptophan metabolism-related lncRNA. The risk score was closely associated with common clinical features such as immune cell infiltration, immune-related function, TMB, and anticancer drug sensitivity. Knockdown of ZNF8-ERVK3-1 inhibited LUAD cell proliferation, migration, invasion, and G0/G1 phase blockade and promoted apoptosis.


Assuntos
Adenocarcinoma , Antineoplásicos , RNA Longo não Codificante , Animais , Camundongos , Humanos , RNA Longo não Codificante/genética , Triptofano/genética , Prognóstico , Imunidade , Fatores de Transcrição Kruppel-Like
10.
Cell Commun Signal ; 22(1): 203, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566182

RESUMO

BACKGROUND: The metabolically demanding nature of immune response requires nutrients to be preferentially directed towards the immune system at the expense of peripheral tissues. We study the mechanisms by which this metabolic reprograming occurs using the parasitoid infection of Drosophila larvae. To overcome such an immune challenge hemocytes differentiate into lamellocytes, which encapsulate and melanize the parasitoid egg. Hemocytes acquire the energy for this process by expressing JAK/STAT ligands upd2 and upd3, which activates JAK/STAT signaling in muscles and redirects carbohydrates away from muscles in favor of immune cells. METHODS: Immune response of Drosophila larvae was induced by parasitoid wasp infestation. Carbohydrate levels, larval locomotion and gene expression of key proteins were compared between control and infected animals. Efficacy of lamellocyte production and resistance to wasp infection was observed for RNAi and mutant animals. RESULTS: Absence of upd/JAK/STAT signaling leads to an impaired immune response and increased mortality. We demonstrate how JAK/STAT signaling in muscles leads to suppression of insulin signaling through activation of ImpL2, the inhibitor of Drosophila insulin like peptides. CONCLUSIONS: Our findings reveal cross-talk between immune cells and muscles mediates a metabolic shift, redirecting carbohydrates towards immune cells. We emphasize the crucial function of muscles during immune response and show the benefits of insulin resistance as an adaptive mechanism that is necessary for survival.


Assuntos
Proteínas de Drosophila , Resistência à Insulina , Vespas , Animais , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Drosophila/genética , Músculos , Vespas/metabolismo , Larva/metabolismo , Imunidade , Carboidratos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo
11.
Sci Rep ; 14(1): 7994, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580687

RESUMO

Cordyceps militaris (L.) Link (C. militaris) contains various beneficial substances, including polysaccharides (galactomannan), nucleotides (adenosine and cordycepin), cordycepic acid, amino acids, and sterols (ergosterol and beta-sitosterol). It also contains other essential nutrients, such as protein, vitamins (E, K, B1, B2, and B12), and minerals (potassium, sodium, calcium, magnesium, iron, zinc, and selenium). Due to the numerous health benefits of supplements and products containing C. militaris extract, their popularity has increased. However, the immunostimulant effect of C. militaris remains unclear. Therefore, this study developed a functional beverage from the submerged fermentation of C. militaris (FCM) and aimed to investigate the potential of FCM in healthy male and female volunteers in Phayao Province, Thailand. This study provides essential information for the development of healthy drink products. Healthy men and women were provided either FCM containing 2.85 mg of cordycepin or placebo for 8 weeks (n = 10 for each gender). The immune cell markers, immunoglobulins, and safety parameters were assessed initially at baseline and at 4 and 8 weeks. The NK cell activity markedly increased in the male FCM group from baseline (p = 0.049) to 4 weeks after receiving FCM. Compared with those in the placebo group, the NK activity in women who received FCM for 8 weeks significantly increased (p = 0.023) from baseline. Within-group analysis revealed that the IL-1ß levels were markedly reduced in the male FCM group (p = 0.049). Furthermore, the IL-6 levels decreased from baseline in the female FCM group (p = 0.047). The blood sugar, lipid, and safety indices were not different between the experimental groups. FCM can potentially be developed as an immune-boosting supplement without liver, kidney, or blood component toxicity.


Assuntos
Cordyceps , Adulto , Humanos , Masculino , Feminino , Cordyceps/química , Desoxiadenosinas/farmacologia , Adenosina/metabolismo , Adjuvantes Imunológicos/farmacologia , Fígado , Imunidade
12.
Mol Cancer ; 23(1): 72, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581001

RESUMO

For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.


Assuntos
Imunidade , Neoplasias , Humanos , Imunoterapia , Imunomodulação , Neoplasias/terapia
13.
Nat Commun ; 15(1): 3102, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600072

RESUMO

Several studies have suggested the imprinting of SARS-CoV-2 immunity by original immune challenge without addressing the formation of the de novo response to successive antigen exposures. As this is crucial for the development of the original antigenic sin, we assessed the immune response against the mutated epitopes of omicron SARS-CoV-2 after vaccine breakthrough. Our data demonstrate a robust humoral response in thrice-vaccinated individuals following omicron breakthrough which is a recall of vaccine-induced memory. The humoral and memory B cell responses against the altered regions of the omicron surface proteins are impaired. The T cell responses to mutated epitopes of the omicron spike protein are present due to the high cross-reactivity of vaccine-induced T cells rather than the formation of a de novo response. Our findings, therefore, underpin the speculation that the imprinting of SARS-CoV-2 immunity by vaccination may lead to the development of original antigenic sin if future variants overcome the vaccine-induced immunity.


Assuntos
Infecções Irruptivas , Vacinas , Humanos , Vacinação , Epitopos , SARS-CoV-2 , Imunidade , Anticorpos Antivirais , Anticorpos Neutralizantes
14.
Sci Rep ; 14(1): 8379, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600116

RESUMO

Macrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.


Assuntos
Lacticaseibacillus rhamnosus , Monócitos , Humanos , Monócitos/metabolismo , Secretoma , Lipopolissacarídeos , Citocinas/metabolismo , Quimiocinas/metabolismo , Imunidade
15.
PLoS One ; 19(4): e0301367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625908

RESUMO

BACKGROUND: Understanding the immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination is important in nursing home (NH) residents, a high-risk population. METHODS: An observational longitudinal evaluation of 37 consenting vaccinated NH residents with/without SARS-CoV-2 infection from October 2020 to July 2022 was conducted to characterize the immune response to spike protein due to infection and/or mRNA COVID-19 vaccine. Antibodies (IgG) to SARS-CoV-2 full-length spike, nucleocapsid, and receptor binding domain protein antigens were measured, and surrogate virus neutralization capacity was assessed using Meso Scale Discovery immunoassays. The participant's spike exposure status varied depending on the acquisition of infection or receipt of a vaccine dose. Longitudinal linear mixed effects modeling was used to describe trajectories based on the participant's last infection or vaccination; the primary series mRNA COVID-19 vaccine was considered two spike exposures. Mean antibody titer values from participants who developed an infection post receipt of mRNA COVID-19 vaccine were compared with those who did not. In a subset of participants (n = 15), memory B cell (MBC) S-specific IgG (%S IgG) responses were assessed using an ELISPOT assay. RESULTS: The median age of the 37 participants at enrollment was 70.5 years; 30 (81%) had prior SARS-CoV-2 infection, and 76% received Pfizer-BioNTech and 24% Moderna homologous vaccines. After an observed augmented effect with each spike exposure, a decline in the immune response, including %S IgG MBCs, was observed over time; the percent decline decreased with increasing spike exposures. Participants who developed an infection at least two weeks post-receipt of a vaccine were observed to have lower humoral antibody levels than those who did not develop an infection post-receipt. CONCLUSIONS: These findings suggest that understanding the durability of immune responses in this vulnerable NH population can help inform public health policy regarding the timing of booster vaccinations as new variants display immune escape.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Georgia , SARS-CoV-2 , Vacinação , Imunidade , Casas de Saúde , RNA Mensageiro , Imunoglobulina G , Anticorpos Antivirais
16.
J Exp Clin Cancer Res ; 43(1): 114, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627815

RESUMO

BACKGROUND: The efficacy of anti-PD-1 therapy is primarily hindered by the limited T-cell immune response rate and immune evasion capacity of tumor cells. Autophagy-related protein 7 (ATG7) plays an important role in autophagy and it has been linked to cancer. However, the role of ATG7 in the effect of immune checkpoint blockade (ICB) treatment on high microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) CRC is still poorly understood. METHODS: In this study, patients from the cancer genome altas (TCGA) COAD/READ cohorts were used to investigate the biological mechanism driving ATG7 development. Several assays were conducted including the colony formation, cell viability, qRT-PCR, western blot, immunofluorescence, flow cytometry, ELISA, immunohistochemistry staining and in vivo tumorigenicity tests. RESULTS: We found that ATG7 plays a crucial role in MSI-H CRC. Its knockdown decreased tumor growth and caused an infiltration of CD8+ T effector cells in vivo. ATG7 inhibition restored surface major histocompatibility complex I (MHC-I) levels, causing improved antigen presentation and anti-tumor T cell response by activating reactive oxygen species (ROS)/NF-κB pathway. Meanwhile, ATG7 inhibition also suppressed cholesterol accumulation and augmentation of anti-tumor immune responses. Combining ATG7 inhibition and statins improved the therapeutic benefit of anti-PD-1 in MSI-H CRC. Importantly, CRC patients with high expression of both ATG7 and recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) experienced worse prognosis compared to those with low ATG7 and HMGCR expression. CONCLUSIONS: Inhibition of ATG7 leads to upregulation of MHC-I expression, augments immune response and suppresses cholesterol accumulation. These findings demonstrate that ATG7 inhibition has therapeutic potential and application of statins can increase the sensitivity to immune checkpoint inhibitors.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Inibidores de Hidroximetilglutaril-CoA Redutases , Síndromes Neoplásicas Hereditárias , Humanos , Proteína 7 Relacionada à Autofagia/genética , Colesterol , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade , Instabilidade de Microssatélites
17.
J Immunother Cancer ; 12(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589249

RESUMO

BACKGROUND: Interferons (IFNs) are essential for activating an effective immune response and play a central role in immunotherapy-mediated immune cell reactivation for tumor regression. Type III IFN (λ), related to type I IFN (α), plays a crucial role in infections, autoimmunity, and cancer. However, the direct effects of IFN-λ on the tumor immune microenvironment have not been thoroughly investigated. METHODS: We used mouse MB49 bladder tumor models, constructed a retroviral vector expressing mouse IFN-λ3, and transduced tumor cells to evaluate the antitumor action of IFN-λ3 in immune-proficient tumors and T cell-deficient tumors. Furthermore, human bladder cancer samples (cohort 1, n=15) were used for immunohistochemistry and multiplex immunoflurescence analysis to assess the expression pattern of IFN-λ3 in human bladder cancer and correlate it with immune cells' infiltration. Immunohistochemistry analysis was performed in neoadjuvant immunotherapy cohort (cohort 2, n=20) to assess the correlation between IFN-λ3 expression and the pathological complete response rate. RESULTS: In immune-proficient tumors, ectopic Ifnl3 expression in tumor cells significantly increased the infiltration of cytotoxic CD8+ T cells, Th1 cells, natural killer cells, proinflammatory macrophages, and dendritic cells, but reduced neutrophil infiltration. Transcriptomic analyses revealed significant upregulation of many genes associated with effective immune response, including lymphocyte recruitment, activation, and phagocytosis, consistent with increased antitumor immune infiltrates and tumor inhibition. Furthermore, IFN-λ3 activity sensitized immune-proficient tumors to anti-PD-1/PD-L1 blockade. In T cell-deficient tumors, increased Ly6G-Ly6C+I-A/I-E+ macrophages still enhanced tumor cell phagocytosis in Ifnl3 overexpressing tumors. IFN-λ3 is expressed by tumor and stromal cells in human bladder cancer, and high IFN-λ3 expression was positively associated with effector immune infiltrates and the efficacy of immune checkpoint blockade therapy. CONCLUSIONS: Our study indicated that IFN-λ3 enables macrophage-mediated phagocytosis and antitumor immune responses and suggests a rationale for using Type III IFN as a predictive biomarker and potential immunotherapeutic candidate for bladder cancer.


Assuntos
Interferon lambda , Neoplasias da Bexiga Urinária , Animais , Camundongos , Humanos , Linfócitos T CD8-Positivos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Macrófagos , Imunidade , Fagocitose , Microambiente Tumoral
18.
J Transl Med ; 22(1): 341, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594751

RESUMO

BACKGROUND: Chemoimmunotherapy has shown promising advantages of eliciting immunogenic cell death and activating anti-tumor immune responses. However, the systemic toxicity of chemotherapy and tumor immunosuppressive microenvironment limit the clinical application. METHODS: Here, an injectable sodium alginate hydrogel (ALG) loaded with nanoparticle albumin-bound-paclitaxel (Nab-PTX) and an immunostimulating agent R837 was developed for local administration. Two murine hepatocellular carcinoma and breast cancer models were established. The tumor-bearing mice received the peritumoral injection of R837/Nab-PTX/ALG once a week for two weeks. The antitumor efficacy, the immune response, and the tumor microenvironment were investigated. RESULTS: This chemoimmunotherapy hydrogel with sustained-release character was proven to have significant effects on killing tumor cells and inhibiting tumor growth. Peritumoral injection of our hydrogel caused little harm to normal organs and triggered a potent antitumor immune response against both hepatocellular carcinoma and breast cancer. In the tumor microenvironment, enhanced immunogenic cell death induced by the combination of Nab-PTX and R837 resulted in 3.30-fold infiltration of effector memory T cells and upregulation of 20 biological processes related to immune responses. CONCLUSIONS: Our strategy provides a novel insight into the combination of chemotherapy and immunotherapy and has the potential for clinical translation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Imiquimode/farmacologia , Imiquimode/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia/métodos , Imunidade , Microambiente Tumoral
19.
20.
Gut Microbes ; 16(1): 2334967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630006

RESUMO

Human milk oligosaccharides (HMOs) are vital milk carbohydrates that help promote the microbiota-dependent growth and immunity of infants. Sialic acid (SA) is a crucial component of sialylated milk oligosaccharides (S-MOs); however, the effects of SA supplementation in lactating mothers on S-MO biosynthesis and their breastfed infants are unknown. Probiotic intervention during pregnancy or lactation demonstrates promise for modulating the milk glycobiome. Here, we evaluated whether SA and a probiotic (Pro) mixture could increase S-MO synthesis in lactating mothers and promote the microbiota development of their breastfed neonates. The results showed that SA+Pro intervention modulated the gut microbiota and 6'-SL contents in milk of maternal rats more than the SA intervention, which promoted Lactobacillus reuteri colonization in neonates and immune development. Deficient 6'-SL in the maternal rat milk of St6gal1 knockouts (St6gal1-/-) disturbed intestinal microbial structures in their offspring, thereby impeding immune tolerance development. SA+Pro intervention in lactating St6gal1± rats compromised the allergic responses of neonates by promoting 6'-SL synthesis and the neonatal gut microbiota. Our findings from human mammary epithelial cells (MCF-10A) indicated that the GPR41-PI3K-Akt-PPAR pathway helped regulate 6'-SL synthesis in mammary glands after SA+Pro intervention through the gut - breast axis. We further validated our findings using a human-cohort study, confirming that providing SA+Pro to lactating Chinese mothers increased S-MO contents in their breast milk and promoted gut Bifidobacterium spp. and Lactobacillus spp. colonization in infants, which may help enhance immune responses. Collectively, our findings may help alter the routine supplementation practices of lactating mothers to modulate milk HMOs and promote the development of early-life gut microbiota and immunity.


Assuntos
Microbioma Gastrointestinal , Ácido N-Acetilneuramínico , Feminino , Lactente , Gravidez , Humanos , Animais , Ratos , Lactação , Estudos de Coortes , Fosfatidilinositol 3-Quinases , Leite Humano , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...